Prototyping V: Image Extender – Image sonification tool for immersive perception of sounds from images and new creation possibilities

Integration of AI-Object Recognition in the automated audio file search process:

After setting up the initial interface for the freesound.org API and confirming everything works with test tags and basic search filters, the next major milestone is now in motion: AI-based object recognition using the GeminAI API.

The idea is to feed in an image (or a batch of them), let the AI detect what’s in it, and then use those recognized tags to trigger an automated search for corresponding sounds on freesound.org. The integration already loads the detected tags into an array, which is then automatically passed on to the sound search. This allows the system to dynamically react to the content of an image and search for matching audio files — no manual tagging needed anymore.

So far, the detection is working pretty reliably for general categories like “bird”, “car”, “tree”, etc. But I’m looking into models or APIs that offer more fine-grained recognition. For instance, instead of just “bird”, I’d like it to say “sparrow”, “eagle”, or even specific songbird species if possible. This would make the whole sound mapping feel much more tailored and immersive.

A list of test images will be prepared, but there’s already a testing matrix for different objects, situations, scenery and technical differences

On the freesound side, I’ve got the basic query parameters set up: tag search, sample rate, file type, license, and duration filters. There’s room to expand this with additional parameters like rating, bit depth, and maybe even a random selection toggle to avoid repetition when the same tag comes up multiple times.

Coming up: I’ll be working on whether to auto-play or download the selected audio files, and starting to test how the AI-generated tags influence the mood and quality of the soundscape. The long-term plan includes layering sounds, adjusting volumes, experimenting with EQ and filtering — all to make the playback more natural and immersive.

David Adlberger is a sound designer and media artist based in Graz. With a technical background and a Bachelor’s degree in Media Technology from FH St. Pölten, he is currently pursuing a Master’s degree in Sound Design at FH Joanneum and Kunstuniversität Graz. His work explores the intersection of narrative, technology, and perception. Fascinated since childhood by the creation of sonic worlds, he combines technical and artistic experimentation. His practice ranges from film sound and immersive 3D audio to algorithmic composition and audiovisual installations.
Leave a Reply

Your email address will not be published. Required fields are marked *