Prototyping XI: Image Extender – Image sonification tool for immersive perception of sounds from images and new creation possibilities

Smart Sound Selection: Modes and Filters

1. Modes: Random vs. Best Result

  • Best Result Mode (Quality-Focused)
    The system prioritizes sounds with the highest ratings and download counts, ensuring professional-grade audio quality. It progressively relaxes standards (e.g., from 4.0+ to 2.5+ ratings) if no perfect match is found, guaranteeing a usable sound for every tag.
  • Random Mode (Diverse Selection)
    In this mode, the tool ignores quality filters, returning the first valid sound for each tag. This is ideal for quick experiments or when unpredictability is desired or to be sure to achieve different results.

2. Filters: Rating vs. Downloads

Users can further refine searches with two filter preferences:

  • Rating > Downloads
    Favors sounds with the highest user ratings, even if they have fewer downloads. This prioritizes subjective quality (e.g., clean recordings, well-edited clips).
    Example: A rare, pristine “tiger growl” with a 4.8/5 rating might be chosen over a popular but noisy alternative.
  • Downloads > Rating
    Prioritizes widely downloaded sounds, which often indicate reliability or broad appeal. This is useful for finding “standard” effects (e.g., a typical phone ring).
    Example: A generic “clock tick” with 10,000 downloads might be selected over a niche, high-rated vintage clock sound.

If there would be no matching sound for the rating or download approach the system gets to the fallback and uses the hierarchy table privided to change for example maple into tree.

Intelligent Frequency Management

The audio engine now implements Bark Scale Filtering, which represents a significant improvement over the previous FFT peaks approach. By dividing the frequency spectrum into 25 critical bands spanning 20Hz to 20kHz, the system now precisely mirrors human hearing sensitivity. This psychoacoustic alignment enables more natural spectral adjustments that maintain perceptual balance while processing audio content.

For dynamic equalization, the system features adaptive EQ Activation that intelligently engages only during actual sound clashes. For instance, when two sounds compete at 570Hz, the EQ applies a precise -4.7dB reduction exclusively during the overlapping period.

o preserve audio quality, the system employs Conservative Processing principles. Frequency band reductions are strictly limited to a maximum of -6dB, preventing artificial-sounding results. Additionally, the use of wide Q values (1.0) ensures that EQ adjustments maintain the natural timbral characteristics of each sound source while effectively resolving masking issues.

These core upgrades collectively transform Image Extender’s mixing capabilities, enabling professional-grade audio results while maintaining the system’s generative and adaptive nature. The improvements are particularly noticeable in complex soundscapes containing multiple overlapping elements with competing frequency content.

Visualization for a better overview

The newly implemented Timeline Visualization provides unprecedented insight into the mixing process through an intuitive graphical representation.

Prototyping X: Image Extender – Image sonification tool for immersive perception of sounds from images and new creation possibilities

Researching Automated Mixing Strategies for Clarity and Real-Time Composition

As the Image Extender project continues to evolve from a tagging-to-sound pipeline into a dynamic, spatially aware audio compositing system, this phase focused on surveying and evaluating recent methods in automated sound mixing. My aim was to understand how existing research handles spectral masking, spatial distribution, and frequency-aware filtering—especially in scenarios where multiple unrelated sounds are combined without a human in the loop.

This blog post synthesizes findings from several key research papers and explores how their techniques may apply to our use case: a generative soundscape engine driven by object detection and Freesound API integration. The next development phase will evaluate which of these methods can be realistically adapted into the Python-based architecture.

Adaptive Filtering Through Time–Frequency Masking Detection

A compelling solution to masking was presented by Zhao and Pérez-Cota (2024), who proposed a method for adaptive equalization driven by masking analysis in both time and frequency. By calculating short-time Fourier transforms (STFT) for each track, their system identifies where overlap occurs and evaluates the masking directionality—determining whether a sound acts as a masker or a maskee over time.

These interactions are quantified into masking matrices that inform the design of parametric filters, tuned to reduce only the problematic frequency bands, while preserving the natural timbre and dynamics of the source sounds. The end result is a frequency-aware mixing approach that adapts to real masking events rather than applying static or arbitrary filtering.

Why this matters for Image Extender:
Generated mixes often feature overlapping midrange content (e.g., engine hums, rustling leaves, footsteps). By applying this masking-aware logic, the system can avoid blunt frequency cuts and instead respond intelligently to real-time spectral conflicts.

Implementation possibilities:

  • STFTs: librosa.stft
  • Masking matrices: pairwise multiplication and normalization (NumPy)
  • EQ curves: second-order IIR filters via scipy.signal.iirfilter

“This information is then systematically used to design and apply filters… improving the clarity of the mix.”
— Zhao and Pérez-Cota (2024)

Iterative Mixing Optimization Using Psychoacoustic Metrics

Another strong candidate emerged from Liu et al. (2024), who proposed an automatic mixing system based on iterative masking minimization. Their framework evaluates masking using a perceptual model derived from PEAQ (ITU-R BS.1387) and adjusts mixing parameters—equalization, dynamic range compression, and gain—through iterative optimization.

The system’s strength lies in its objective function: it not only minimizes total masking but also seeks to balance masking contributions across tracks, ensuring that no source is disproportionately buried. The optimization process runs until a minimum is reached, using a harmony search algorithm that continuously tunes each effect’s parameters for improved spectral separation.

Why this matters for Image Extender:
This kind of global optimization is well-suited for multi-object scenes, where several detected elements contribute sounds. It supports a wide range of source content and adapts mixing decisions to preserve intelligibility across diverse sonic elements.

Implementation path:

  • Masking metrics: critical band energy modeling on the Bark scale
  • Optimization: scipy.optimize.differential_evolution or other derivative-free methods
  • EQ and dynamics: Python wrappers (pydub, sox, or raw filter design via scipy.signal)

“Different audio effects… are applied via an iterative Harmony searching algorithm that aims to minimize the masking.”
— Liu et al. (2024)

Comparative Analysis

MethodCore ApproachIntegration PotentialImplementation Effort
Time–Frequency Masking (Zhao)Analyze masking via STFT; apply targeted EQHigh — per-event conflict resolutionMedium
Iterative Optimization (Liu)Minimize masking metric via parametric searchHigh — global mix clarityHigh

Both methods offer significant value. Zhao’s system is elegant in its directness—its per-pair analysis supports fine-grained filtering on demand, suitable for real-time or batch processes. Liu’s framework, while computationally heavier, offers a holistic solution that balances all tracks simultaneously, and may serve as a backend “refinement pass” after initial sound placement.

Looking Ahead

This research phase provided the theoretical and technical groundwork for the next evolution of Image Extender’s audio engine. The next development milestone will explore hybrid strategies that combine these insights:

  • Implementing a masking matrix engine to detect conflicts dynamically
  • Building filter generation pipelines based on frequency overlap intensity
  • Testing iterative mix refinement using masking as an objective metric
  • Measuring the perceived clarity improvements across varied image-driven scenes

References

Zhao, Wenhan, and Fernando Pérez-Cota. “Adaptive Filtering for Multi-Track Audio Based on Time–Frequency Masking Detection.” Signals 5, no. 4 (2024): 633–641. https://doi.org/10.3390/signals5040035:contentReference[oaicite:2]{index=2}

Liu, Xiaojing, Angeliki Mourgela, Hongwei Ai, and Joshua D. Reiss. “An Automatic Mixing Speech Enhancement System for Multi-Track Audio.” arXiv preprint arXiv:2404.17821 (2024). https://arxiv.org/abs/2404.17821:contentReference[oaicite:3]{index=3}